

Institut für Baubiologie Rosenheim GmbH

Expert Report

No. 3018 - 991 with reference to the seal of approval

"Tested and Recommended by the IBR"

for the products

Wood Fibre Materials

Wood fibreboards STEICO isorel, underfloor
Wood fibre insulation boards STEICO therm, flex, universal, special dry
Wood fibre blow-in insulation STEICO zell

Applicant: STEICO SE

Otto-Lilienthal-Ring 30 D-85622 Feldkirchen Tel. + 49 (0) 89 991 551 0

www.steico.com

Term of validity: December 2019

This report may only be reproduced and published in unabridged and unaltered form. Any other use, even of excerpts or quotations, must be explicitly approved by the IBR.

It is the objective of the IBR to identify non-polluting building products for healthy living for the consumer by awarding the seal of approval "TESTED AND APPROVED BY THE IBR".

The seal of approval was created by the Institut für Baubiologie Rosenheim GmbH in 1982 to enable consumers with awareness for health and ecological matters to protect themselves against health hazards caused by building materials and furniture in their residential environment.

The seal of approval is awarded to products which ensure healthy living with respect to building biology and at the same time protect the environment. When awarding the seal of approval, we only use scientific and technical analysis methods which are based on normative regulations as well as the current state-of-the-art of laboratory analytics so that they should be understood both by third-party experts and by end consumers.

The aim of awarding the seal of approval "TESTED AND RECOMMENDED BY THE IBR" to as many products as possible is to enable an increasing number of consumers and end users to make criteria related to building biology a critical part of their decision when purchasing products for building and furnishing their homes.

The tests listed in our expert reports are not supposed to supersede the requirements in terms of building physics, supervision, legal regulations, or safety. They are merely a complementary set of tests related to health, physiology, building biology, and ecology aspects which have been neglected.

The seal of approval "TESTED AND APPROVED BY THE IBR" is based on a holistic perspective. Besides its focus on the tests that determine the potential physiological impact of the products on human beings and/or the environment, the expert report associated with granting the seal also honours any product whose production, processing, use, and ecological recycling have no or only a limited, tolerable adverse effect on the environment.

The emission of harmful substances, e.g. with a carcinogenic and/or mutagenic potential, is always to be considered as a criterion for exclusion. The seal of approval will under no circumstances be awarded to such products.

Any names of companies, products or brands mentioned in our expert reports are protected by copyright. The fact that we mention them is neither to be construed as a valuation nor as a recommendation in this context.

List of contents

1.	Product description	4
۷.	Test results	5
2	.1 Radioactivity	5
2	.2 Biocides, pyrethroids, OHCs, phthalates	5
	2.2.1 Biocides	<i>6</i>
	2.2.2. Polychlorinated biphenyls	7
	2.2.3 Phthalate	7
	2.2.4 Flame retardants	8
	2.2.5 AOX /EOX	8
2	.3 Solvent and odoriferous VOC substance testing	9
	Evaluation according to AgBB scheme:	11
2	4 French VOC ordinance	14
2	.5 Heavy metals	15
3.	Overall assessment	16

Appendix: Bibliography

1. Product description

For the purpose of awarding the seal of approval, the company has instructed us to subject its products to building biology follow-up testing based on follow-up testing conducted in 2013 (expert report no. 3016 - 798). The products were collected from the customer on 06 November 2017 /12 March 2018 by official supervision of Instytut Technologii Drewna, Poznan. IBR received the original sampling protocols for review.

In terms of materials technology, the products submitted for testing are upgraded wood fibre-board according to EN 622-1 and EN 622-4 and/or EN 13171 as well as other wood fibre materials for construction applications.

All test results are summarised for the products below:

therm	flex	isorel	universal	therm dry	zell
internal	flex Keil	roof	special	protect L dry	
therm plus		underfloor	protect M	special dry	
therm SD		base		protect M dry	
floor				top	
				install	
				universal dry	
				protect H dry	

Typical areas of application are thermal and acoustic insulation in the building trade. Lignin found naturally in wood is released in the production process. This is adequate as a binding agent in order to bind the panel materials produced under pressure and heat and to achieve adequate strength and stiffness. The soft wood fibreboard is also produced in a bituminised version. This makes the panel materials permanently resistant against moisture penetration. Only small-diameter timber and untreated residual coniferous wood from the sawing industry is used in production, relieving the forest industry and taken from sustainable forestry operations. Forest thinnings are used among others. Used wood which may be contaminated is excluded. PU resins and paraffins are also used as binding agents and for hydrophobising.

Similar to panel-shaped wood-based materials and/or thermal insulation felt materials, all common wood processing tools can be used. While dust generated during processing is not hazardous to health, it should largely be avoided.

The need to use personal protective equipment when processing the material within the scope of the standards stipulated by the employer's liability insurance associations is pointed out explicitly. Persons charged with processing these materials can make use of readily available assistance. Comprehensive product information and processing regulations can be viewed on the manufacturer's Internet site or can be found in the product-specific printed documentation.

It is subject to constant third party monitoring and controls by the manufacturer. The local application of additives or coating which might be necessary is not part of the examination. For more

detailed specifications, please contact the manufacturer. The required safety data sheets were submitted to us for review.

There are no issues with respect to safe disposal. There are no hazardous components to be disclosed.

2. Test results

2.1 Radioactivity

Natural radiation exposure is composed of cosmic and terrestrial radiation. Humans are mainly subject to internal exposure due to radon gas. In addition to radon in ground air due to geological conditions, an increased concentration of radon may be found in living spaces because of certain building materials. Breathing in the gas over a long period of time may expose the lungs to radioactive radiation. While most radon particles are exhaled again, its radioactive decay products can be deposited in the lungs. In 1999, the Radiation Protection 112 document issued by the European Commission proposed an Activity Concentration Index (ACI) for building materials. The limit is $ACI \le 1.00$ while the Institut für Baubiologie Rosenheim sets the ACI limit at ≤ 0.75 . Gamma-spectrometry is used to determine the natural radioactivity.

Evaluation:

The tested boards with a value of 0.06 are below the allowable limits and are therefore safe in regards to radiation exposure.

2.2 Biocides, pyrethroids, OHCs, phthalates

Biocides, pyrethroids, organic halogenated compounds (OHCs) or phthalates are added to different building materials to produce various properties such as pest resistance and durability, or also for technical processing reasons. Organic halogenated compounds are further differentiated into AOX (adsorbable organic halogens), POX (purgeable organic halogens) and EOX (extractable organic halogens) according to DIN 1485. In order to prevent the impairment of health due to the classes of compounds named above, limit values have been established for safe use of the building materials in living spaces and these should not be exceeded.

Test method: The tests are carried out by means of extraction based on DFG-\$19 and coulometry according to DIN 38414-\$17/18.

Page **5** of **18**

2.2.1 Biocides

Test method: several hours of soxhlet extraction with n-hexane respectively methanol and qualitative/quantitative gas chromatography with mass spectrometry (GC-MS)

PCP/TCP-analysis: Derivation with acetic anhydride under alkaline conditions.

Substance	Measured value	Limit of detection
	[mg/kg]	[mg/kg]
Pentachlorophenol PCP	-	0.1
2,3,4,5 – Tetrachlorophenol	-	0.1
2,3,5,6 – Tetrachlorophenol	-	0.1
beta – HCH	-	0.3
gamma – HCH (Lindane)	-	0.3
Dichlofluanid	-	0.3
Tolylfluanid	-	0.3
Chlorthalonil	-	0.3
alpha – Endosulfan	-	0.3
beta – Endosulfan	-	0.3
Endosulfan – sulphate	-	0.3
Furmecyclox	-	0.3
Hexachlorobenzene	-	0.3
Methylparathion	-	0.3
Ethylparathion	-	0.3
Chlorpyriphos	-	0.3
Heptachlor	-	0.3
Aldrin	-	0.3
cis – heptachlor epoxide	_	0.3
trans - heptachlor epoxide	_	0.3
cis – chlordane	_	0.3
trans - chlordane	_	0.3
Endrin	_	0.3
Dieldrin	_	0.3
Bromophos	_	0.3
Mirex	_	0.3
Malathion	_	0.3
Hexachlorophene	_	0.3
o,p – DDT	_	0.3
o,p' – DDT	_	0.3
o,p – DDD	_	0.3
p,p' – DDD	_	0.3
o,p – DDE	_	0.3
b'b, - DDE	_	0.3
Eulan	_	0.3
Chlornaphtalin	_	0.3
Dichlorvos	_	0.3
IPBC	_	0.3
Propiconazol		0.3
Tebuconazol	-	0.3
Cyproconazol	_	0.3
Silafluofen	_	0.3
Etofenprox	-	0.3
Resmethrin	-	0.3

Deltamethrin	-	0.3
Tetramethrin	-	0.3
Cypermethrin	-	0.3
Cyfluthrin	-	0.3
cis – trans – Permethrin	-	0.3
Allethrin	-	0.3
Phenothrin	=	0.3
Cyhalothrin	-	0.3

2.2.2. Polychlorinated biphenyls

Test method: Extraction and qualitative/quantitative gas chromatography with mass spectrometry (GC-MS) (DIN ISO 10382)

Substance	Measured value [mg/kg]	Limit of detection [mg/kg]
Polychlorinated biphenyls (PCB) no.: 28	-	0.02
Polychlorinated biphenyls (PCB) no.: 52	-	0.02
Polychlorinated biphenyls (PCB) no.: 101	-	0.02
Polychlorinated biphenyls (PCB) no.: 138	-	0.02
Polychlorinated biphenyls (PCB) no.: 153	-	0.02
Polychlorinated biphenyls (PCB) no.: 180	-	0.02
Polychlorinated biphenyls PCB: – in total	-	0.1

2.2.3 Phthalate

Test method: Extraction following DFG-\$19 and qualitative/quantitative gas chromatography with mass spectrometry (GC-MS) (GC-MS)

Substance	Measured value [mg/kg]	Limit of detection [mg/kg]
Phthalic acid anhydride	-	1
Dimethyl phthalate	-	1
Diethyl phthalate	-	1
Diisobutylphthalat (Bis-2-methylpropylphthalat) DiBP	-	1
Di-n-butyl phthalate DBP	-	1
Benzylbutyl phthalate BBP	-	1
Dioctyl phthalate DOP	-	1
Diisononyl phthalate DINP	-	1
Didecyl phthalate	-	1
Di(2-ethylhexyl) adipate	-	1
Di(2-ethylhexyl) phthalate DEHP	-	1

2.2.4 Flame retardants

Test method: Extraction following DFG-\$19 and qualitative/quantitative gas chromatography with mass spectrometry (GC-M\$) (GC-M\$)

Substance	Measured value [mg/kg]	Limit of detection [mg/kg]
Pentabrominated diphenyl ether (Penta-BDE)	_	1
Octabrominated diphenyl ether (Octa-BDE)	-	1
Decabrominated diphenyl ether (Deca-BDE)	-	1
Tetrabisphenol A (TBBPA)	-	1
Hexabromocyclododecane (HBCD)	-	1
Polybrominated bipyhenyls(PBB)	-	1
Polybrominated diphenyl ether (PBDE)	-	1
Chlorinated paraffins	-	100
Mirex	-	1
Tris(2-chloroethyl) phosphate (TCEP)	-	0.1
Tris(2-ethylhexyl) phosphate (TEHP)	-	0.1
Tris(monochloropropyl)phosphate (TDCPP)	-	0.1
Tris(2-butoxyethyl) phosphate	-	0.1
Triphenylphosphate (TPP)	-	0.1
Trikresylphosphate (TKP)	-	0.1
Isopropylated Triphenylphosphate (ITP)	-	1
Resorcin-bis-diphenylphoshate (RDP)	_	1
Bisphenol-A-bis(diphenylphosphate) (BDP)	_	1

2.2.5 AOX /EOX

Test method: Detection of organic halogenated compounds OHCs: Coulometry following DIN 38414-S18 for AOX – Adsorbable organic halides and following DIN 38414-S17 for EOX – Extractable organic halides following DIN 1485.

	Substanz	Messwert	Berichtsgrenze	
Subsidit		[mg/kg]	[mg/kg]	
	AOX	30 ¹ / 10 ²	10	
	EOX	1,691	1	

¹ STEICOtherm, ² STEICOunderfloor

Evaluation:

No biocides, organic halogenated compounds, pyrethroids or phthalates in measurable concentrations could be detected in the panels submitted for testing. All measurements are below the detection limits specific to the analysis. With the exception of the AOX-value as well as the EOX-value. For example, these are for STEICOtherm SD 30 mg/kg as well as 1,69 mg/kg. For STEICOunderfloor was detected only an AOX-value with 10 mg/kg.

2.3 Solvent and odoriferous VOC substance testing

With an increasing presence of chemical substances at our workplaces and in everyday life, the ambient air quality in indoor environment has deteriorated continually. For workplaces, TLV values (threshold limit values) reflecting the concentration of harmful substances have been defined. For habitable rooms, however, where people spend much more time, there are still no legally stipulated maximum quantities or limit values for harmful substances in the indoor air. It is the declared objective of the new federal building codes in Germany and the European Construction Products Directive to protect the health of building users. The corresponding board which is responsible for finding and establishing VOC limit values is called ECA (European Collaborative Action). As early as in 1997, this board recommended the use of the so-called LCI (Lowest Concentration of Interest) as an evaluation scheme, i.e. concentrations that are just of

interest from a toxicological point of view. With the exception of pesticides, volatile organic substances were classified according to the WHO definitions with respect to their boiling ranges or the volatility resulting from it. The tested materials all

Description	Boiling Range
Very Volatile Organic Compound (VVOC)	< 0 to 50100 °C
2. Volatile Organic Compound (VOC)	50100 to 240260 °C
3. Semi Volatile Organic Compound (SVOC)	240260 to 380400 °C
Organic compound associated with particulate matter or particulate organic matter (POM)	380 °C

have boiling points, which fall into the range shown below.

Test method: The tests are conducted by means of VOC emission chamber measurement according to DIN EN ISO 16000-9. The air exchange rate was adapted to the surface size of the test body. The following test parameters were selected:

Chamber Vol-	Loading Factor	Air Exchange	Surface of Test	Air Tempera-	Relative Hu-
ume		Rate	Device	ture	midity
60 I	0,4 m²/m³	0,5/h + 0,05h	240 cm ²	23 ± 1 °C	50 ± 3 %

or:

Chamber Vol- ume	Loading Factor	Air Exchange Rate	Surface of Test Device	Air Tempera- ture	Relative Hu- midity
225 l	0,4 m²/m³	0,5/h + 0,05h	900 cm ²	23 ± 1 °C	50 ± 3 %

Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOC) were concentrated by adsorbing them to Tenax. After three days, the VOCs were isolated by gas chromatography following thermodesorption with cryofocussing. The VOCs were then identified using mass spectrometry. The individual substances were either quantified against an external toluene standard or quantified substance-specifically by mass spectrometry.

Evaluation base: The evaluation is performed according to the requirements of the AgBB (Committee for the Health Assessment of Building Products in Germany). It was founded in 1997 by the state workgroup "Umweltbezogener Gesundheitsschutz" (LAUG, Environmental Health Protection) of the "Arbeitsgemeinschaft der Obersten Landesgesundheitsbehörden" (AOLG, Working Group of the Upper State Health Authorities).

The AgBB requirements constitute a regularly updated approach for the health assessment of VOC emissions from building products used on the interior of buildings.

Volatile organic compounds according to these requirements include compounds in the retention range from C_6 to C_{16} , which are examined as individual substances and sum parameters under the TVOC concept (<u>Total Volatile Organic Compounds</u>), as well as semi-volatile organic compounds (SVOC) in the retention range from C_{16} to C_{22} . The cumulative SVOC value indicates the sum of all individual substances with a detection limit of 5 μ g/m³. A detection limit of 1 μ g/m³ is applied for all other individual substances.

All CMR substances (carcinogenic, mutagenic, toxic to reproduction/fertility) according to the Ordinance on Hazardous Substances are not included. These always to be considered as a criterion for exclusion.

The quantification of the identified substances with NIK and CMR values is performed by substance. The quantification of the identified substances without NIK values and the unknown substances is respectively performed against toluol equivalents.

Stop criteria: The test can be terminated no sooner than 7 days after loading, if the determined values are less than half the requirements for the 28-day values and there is no significant increase in the concentration of individual substances compared to the measurement on the 3^{rd} day.

Evaluation criteria for test performance after 3 days:

- Cumulative TVOC value (TVOC₃) ≤ 10 mg/m³
- CMR substances ≤ 0.01 mg/m³ as individual substances

Evaluation criteria for test performance after 7 days:

• Review of the results as above to determine whether the stop criteria are met.

Evaluation criteria for test performance after 28 days:

- Cumulative TVOC value (TVOC₂₈) ≤ 1.0 mg/m³
- Cumulative value SVOC₂₈ ≤ 0.1 mg/m³
- CMR substances ≤ 0.001 mg/m³ as individual substances
- A sensory test is performed as well.
- All CAS numbers are specified when reporting on the individual substance evaluations.

- VOCs according to the NIK list are incorporated in the evaluation with a detection limit of 5 $\mu g/m^3$.
- For the VOC evaluation according to the NIK list, the ratio Ri is used with $R_i = C_i / NIK_i$ where it can be assumed that there is no effect when R_i does not exceed the value 1.

If several compounds with concentrations over $5 \mu g/m^3$ are identified, the cumulation of the effects is assumes. This circumstance is represented by the cumulative value R: Where

- R Cumulative value Ri of the individual measurements from the quotient total $R_i = \sum C_i / NIK_i$
- C_i Substance concentration in the test chamber air
- Ri Individual measurement

With the condition R > 1, the product is rejected according to the AgBB requirements.

In order to avoid having a product classified as harmless even though it emits larger amounts of VOCs that cannot be evaluated, a quantity limit is established for non-identifiable VOCs or those without a NIK value which, for the cumulative value, makes up 10 % of the allowable TVOC value. A product meets the criteria if the VOCs that cannot be evaluated with a concentration of 0.005 mg/m³ and up do not exceed 0.1 mg/m³ in total.

Significantly higher values lead to rejection according to the AgBB requirements.

Further details are found in the current information of the Federal Environmental Agency <u>www.umweltbundesamt.de</u> on the health assessment of VOC emissions from building products.

<u>Evaluation</u>: When a product meets all requirements as described above, the IBR classifies it as not hazardous to health for use in the interior rooms of buildings.

Evaluation according to AgBB scheme:

STEICOunderfloor:

Test results after 3 days:

Parameter	Measured value	AgBB-requirement
TVOC C6 to C16	0.52 mg/m³	≤ 10 mg/m³
Σ SVOC C ₁₆ to C ₂₂	< 0.005 mg/m³	-
R of ∑ R _i	0.93	-
∑ VOC without NIK	< 0.005 mg/m³	-
∑ CMR- substances	< 1 µg/m³	≤ 10 µg/m³
Formaldehyde	0.010 mg/m³	-

Test results after 28 days:

Parameter	Measured value	AgBB-requirement
TVOC C6 to C16	0.02 mg/m³	≤ 1 mg/m³
∑ SVOC C ₁₆ to C ₂₂	< 0.005 mg/m³	≤ 0.1 mg/m³
R of ∑ Ri	0.06	≤ 1
∑ VOC without NIK	< 0.005 mg/m³	≤ 0.1 mg/m³
∑ CMR- substances	< 1 µg/m³	≤ 1 µg/m³
Formaldehyde	0.003 mg/m³	≤ 0.12 mg/m³

STEICOtherm SD:

Test results after 7 days:

Parameter	Measured value	AgBB-requirement
TVOC C ₆ to C ₁₆	0.046 mg/m³	≤ 0.5 mg/m³
∑ SVOC C ₁₆ to C ₂₂	< 0.005 mg/m³	≤ 0.05 mg/m³
R of ∑ R _i	0.70	≤ 0.5
∑ VOC without NIK	< 0.005 mg/m³	≤ 0.05 mg/m³
∑ CMR- substances	< 0.001 µg/m³	≤ 0.05 µg/m³
Formaldehyde	0.018 mg/m³	≤ 0.06 ml/m³

The 28-day requirements of the AgBB scheme (TVOC: \leq 1,0 mg/m³; R \leq 1) would be fulfilled.

STEICOzell:

Test results after 3 days:

Parameter	Measured value	AgBB-requirement
TVOC C ₆ to C ₁₆	0.11 mg/m³	≤ 10 mg/m³
∑ SVOC C ₁₆ to C ₂₂	< 0.005 mg/m³	-
R of ∑ Ri	0.67	-
∑ VOC without NIK	0.009 mg/m³	-
∑ CMR- substances	< 1 µg/m³	≤ 10 µg/m³
Formaldehyde	0.052 mg/m³	-

Test results after 28 days:

Parameter	Measured value	AgBB-requirement
TVOC C ₆ to C ₁₆	0.81 mg/m³	≤ 1 mg/m³
∑ SVOC C ₁₆ to C ₂₂	< 0.005 mg/m³	≤ 0.1 mg/m³
R of ∑ Ri	0.57	≤ 1
∑ VOC without NIK	< 0.01 mg/m³	≤ 0.1 mg/m³
∑ CMR- substances	< 1 µg/m³	≤ 1 µg/m³
Formaldehyde	0.028 mg/m³	≤ 0.12 mg/m³

STEICOflex036:

Test results after 3 days:

Parameter	Measured value	AgBB-requirement
TVOC C ₆ to C ₁₆	2.0 mg/m³	≤ 10 mg/m³
∑ SVOC C ₁₆ to C ₂₂	< 0.005 mg/m³	-
R of ∑ Ri	2.3	-
∑ VOC without NIK	< 0.01 mg/m³	-
∑ CMR- substances	< 1 µg/m³	≤ 10 µg/m³
Formaldehyde	0.003 mg/m³	-

Test results after 28 days:

Parameter	Measured value	AgBB-requirement
TVOC C ₆ to C ₁₆	2.0 mg/m ³	≤ 1 mg/m³
∑ SVOC C ₁₆ to C ₂₂	< 0.005 mg/m³	≤ 0.1 mg/m³
R of ∑ Ri	2	≤ 1
∑ VOC without NIK	< 0.01 mg/m³	≤ 0.1 mg/m³
∑ CMR- substances	< 1 µg/m³	≤ 1 µg/m³
Formaldehyde	0.019 mg/m³	≤ 0.12 mg/m³

The requirements of the AgBB scheme are not fulfilled in this measurement with the STEICOflex 036. But taking into account that the main emitter of the wood fibre insulation board is acetic acid, and this is a wood's own ingredient, which is generated during the manufacturing process and is therefore also subject to significant fluctuations from batch to batch, the wood fibre insulation board is a high-quality product made from renewable raw materials from the point of view of the Institute for Building Biology Rosenheim and will continue to be awarded the test seal by us. It should also be noted that wood fibre insulation boards are not in direct contact with the interior climate but are somewhat shielded by foils or other building boards, which normally leads to significantly lower emissions of acetic acid into the living area.

After 28 days the R-value without acetic acid is only 0.4, the TVOC-value is only 43 µg/m³.

Evaluation:

Based on the measurement results and the comparison of measures according to the AgBB schema as well as the approval principles of the DIBt, exposure to emissions of volatile organic compounds due to the tested wooden fibre boards is not expected. Using the boards in the interior rooms of buildings is therefore harmless to health in regards to VOC emissions (remarks on STEICOflex036 are above).

2.4 French VOC ordinance

In order to be brought to market in France, all building products as well as decorative elements and furnishings have to be identified with an emission class since January 2012 (A+, A, B, C) based on VOC emission testing according to the ISO 16000 series of standards. For products that were already available in the French market prior to January 2012, this rule only becomes mandatory starting in September of 2013. A+ identifies products that are virtually free of emissions, while the C rating represents a level that is only just tolerable. The appearance of the labels has been specified in detail.

The building product has to be permanently identified with the emission class in addition to the CE marking with a minimum size of 15 x 30 mm. Products with emissions that significantly exceed these requirements may no longer be brought to market in France. Only metallic building elements, mineral glass products and products used only on the exterior are exempt. The testing system corresponds to the AgBB (Committee for the Health Assessment of Building Products) requirements in Germany, which are also used as the evaluation standard by the "Deutsches Institut für Bautechnik" (German Institute for Building Technology) (DIBt).

This validation method constitutes a significant simplification compared to the elaborate tests according to the AgBB requirements, and provides sufficiently accurate information on the emission behaviour of a material. Detailed information, e.g. on CMR (carcinogenic, mutagenic, toxic to reproduction) substances cannot be derived.

The classification into emission classes is performed by the manufacturer or operator under its own responsibility. The emission class limit values in µg/m³ refer to the cumulative value of total emissions as well as the evaluation for 10 significant harmful substances:

Substance	Emission classes according to French VOC directive			Measured value	
	[µg/m³]				
	С	В	Α	A+	
Formaldehyde	> 120	< 120	< 60	< 10	41 / 22 / 283
Acetaldehyde	> 400	< 400	< 300	< 200	71 / 92 / 73
Toluene	> 600	< 600	< 450	< 300	< 1
Tetrachloroethylene	> 500	< 500	< 350	< 250	< 1
Xylol	> 400	< 400	< 300	< 200	< 1
1,2,4-trimethylbenzene	> 2000	< 2000	< 1500	< 1000	< 1
1,4-dichlorobenzene	> 120	< 120	< 90	< 60	< 1
Ethylbenzene	> 1500	< 1500	< 1000	< 750	< 1
2-butoxyethanol	> 2000	< 2000	< 1500	< 1000	< 1
Styrene	> 500	< 500	< 350	< 250	< 1
Cumulative value TVOC	> 2000	< 2000	< 1500	< 1000	40 ¹ /440 ² / 80 ³

¹Steicounderfloor, ²Steicoflex 036, ³STEICOZell

<u>Evaluation</u>: None of the tested substances could be detected in measurable concentrations with the exception of formaldehyde and acetaldehyde. The measured values are below the specific limit of detection set for each analysis so the tested products are assigned to emission class A+ (1Steicounderfloor, 2Steicoflex 036) or A (3STEICOZeII).

2.5 Heavy metals

By determining the metals contained in the building materials, a statement can be made regarding health risks and possible environmental hazards of the base products used. The most notorious environmentally harmful heavy metals are lead, cadmium and mercury.

Test method: Quantitative determination according to DIN EN ISO 17294-2 using ICP-MS (inductively coupled plasma mass spectrometry). This method enables detection of a large number of elements in a short time and, due to its capability to detect elements reliably, it is one of the most common methods of trace element analytics.

The limit values according to LAGA (working group of the German federal states on waste issues) are used to identify a possible environmental impact due to heavy metals. The assignment values Z 0 to Z 2 are the upper limits for each incorporation class when ground material is used for earthworks, road building, landscaping and landfill work (e.g. cap layers), for the filling of building pits and for land reclamation.

Z 0: Unrestricted incorporation

Z 1.1: Restricted incorporation in open sites

- Z 1.2: Restricted incorporation in open sites in areas with favourable hydrogeological conditions
- Z 2: Restricted incorporation with defined technical safety measures

By determining the content in the eluate according to DIN 38414 S 4, a potential hazard to waters caused by metals should be excluded when the material is landfilled after its useful product life. The comparative values according to LAGA are used here as well (eluate assignment values for soil are applicable) and the requirements of the TVO (German Drinking Water Regulation) as of 1 January 2008 are taken into account.

Evaluation:

Based on the measurement values which are below the specified limit values, the boards as building products are not expected to impact the environment.

3. Overall assessment

Based on the tests that were conducted, the tested wood fibre materials of the company STEICO in plant Czarnków can be classified as safe in regards to the criteria of the seal of approval guidelines defined by the Institut für Baubiologie Rosenheim GmbH.

Notices on awarding and using the seal of approval

In order to ensure neutrality and impartiality, all tests were carried out by independent third parties. We commission the required studies and tests from economically independent laboratories with which we have been maintaining long-standing business relationships. All test results contained in this expert report have been taken from the external test reports. They are archived and can be viewed by the ordering party at any time. The logo of the seal of approval as shown below is protected by copyright. All rights are owned by the IBR.

This seal of approval must always be used in conjunction with the entire product name. The manufacturer may only use the seal of approval in advertising for the specific products for which it was awarded. The manufacturer is obliged not to try to mislead consumers as to for which products the seal of approval has been awarded and for which not. This also applies to the term "TESTED AND APPROVED BY THE IBR".

The "IBR" mark may only be used as a constituent part of the seal of approval.

It is possible to apply for an extension before the period of validity expires. Continued use of the seal of approval depends on the results from the subsequent tests performed by the IBR. Subsequent testing will always be performed according to the seal of approval guidelines valid at the time of testing.

The manufacturers are obliged to inform the IBR in due time of any modification of the product that might have any impact on the product relevant to building biology.

In case of misuse, the institute may prohibit the use of the seal of approval without notice. Employees of the IBR or persons charged by the IBR may at any time, even without prior notice, visit the applicant's production site.

Rosenheim, 26th of May 2018

Reimut Hentschel | Manager

Dr. Nicole Dannenbauer

Dipl.-Chem.

Bibliography

Within the framework of quality management, we also aim to provide sufficient transparency of our processes to third parties. Among other things, this includes listing all parties involved in the certification process.

Laboratories	Investigations	Address	Internet
Indikator GmbH	Heavy metals con- tent	Kaiserstraße 86 a 42329 Wuppertal/Germany +49 (0)202 2641085	www.indikator-labor.de info@indikator-labor.de
Hydroisotop GmbH	Radioactivity	Woelkestraße 9 D-85301 Schweitenkirchen /Germany +49 (0)89 307749-0	www.hydroisotop.de info@hydroisotop.de
MPA	VOC/biocides Formaldehyde Fine dusts Building design cer- tificates	Alfred-Möller-Straße 1 D-16225 Eberswalde /Germany +49 (0)33 34 65 560	www.mpawede office@mpaew.de
VDE Prüf- und Zer- tifizierungsinstitut GmbH	VOC/biocides Formaldehyde Fine dusts Building design cer- tificates	Merianstraße 28 D-63069 Offenbach +49 (0)69 8306-0	www.vde.com/de vde-institut@vde.com

All of the aforementioned parties are economically independent companies who provide commercial laboratory analyses in their own name and on their own account.